
A High Growth-Rate Emerging Pattern for Data

Classification in Microarray Databases

Ye-In Chang, Zih-Siang Chen, and Tsung-Bin Yang
Dept. of Computer Science and Engineering, National Sun Yat-Sen University

Kaohsiung, Taiwan, R.O.C.

Email: changyi@cse.nsysu.edu.tw


Abstract—In the data classification problem for microarray

datasets, we consider two biology datasets which reflect two

extreme different classes for the given same sets of tests.

Basically, the classification process contains two phases: (1)

the training phase, and (2) the testing phase. The propose of

the training phase is to find the representative Emerging

Patterns (EPs) in each of these two datasets, where an EP is

an itemset which satisfies some conditions of the growth rate

from one dataset to another dataset. Note that the growth

rate represents the differences between these two datasets.

The EJEP strategy considers only those itemsets whose

growth rates are infinite, since it claims that those itemsets

may result in the high accuracy. However, the EJEP

strategy will not keep those useful EPs whose growth rates

are very high but not infinite. But, the real-world data

always contains noises. The NEP strategy considers noises

and provides the higher accuracy than the EJEP strategy.

However, it still may miss some itemsets with high growth

rates, which may result in the low accuracy. Therefore, in

this paper, we propose a High Growth-rate EP (HGEP)

strategy to improve the accuracy of the NEP strategy. From

the performance study, our HGEP strategy shows the

higher accuracy than the NEP strategy.

Index Terms—classification, data mining, emerging pattern,

gene expression, microarray

I. INTRODUCTION

After 10 years of research and an amazing 2 billion

dollars in funds, the Human Genome Project finally

reported that 99% of the human genome had been

sequenced [1], [2]. Based on the huge gene expression

databases from the biological experiments, scientists refer

to the expression analysis called microarrays. A DNA

microarray [3], [4] is a collection of microscopic DNA

spots attached to a solid surface, which is a technology

for simultaneously profiling the expression levels of

thousands of genes in a patient sample. Gene expression

datasets are typically organized as a matrix. Assume that

such a matrix has n rows of genes and m columns of

conditions, where n is usually in the range of [2000,

20000] and m is usually in the range of [10, 100], i.e.,

n>>m.

For Emerging Patterns (EPs), we will build a

classification model from the training data, where the

model is represented by n sets of EPs, one set per class.

Manuscript received Nov 20, 2012; revised Jan 27, 2013.

The model can be used to prodict unknown instances in

the future. We stress that the building of the model,

which is equivalent to the discovery of EPs.

According to different types of the training data, the

strategies of the EPs can be divided into two categories,

i.e., the EPs with the infinite growth rate and the EPs with

the finite growth rate. The EJEP strategy [5] only cares

about those itemsets with the infinite growth rate. It

ignores those patterns which have very large growth rates,

although not infinite, i.e., the so called “noise”. However,

the real-world data always contains noises and the NEP

strategy [6] considers noises and provides higher

accuracy than the EJEP strategy. Although the NEP

strategy takes noise patterns into consideration, it still

will miss some itemsets with a large growth rate, which

may result in the low accuracy. Therefore, in this paper,

we propose a High Growth-rate EP (HGEP) strategy to

improve the disadvantage of the NEP strategy. From the

experiment results, we show that the average accuracy of

our HGEP strategy is higher than that of the NEP strategy.

II. THE RELATED WORK

In this section, we describe three well-known strategies

for mining all kinds of Emerging Patterns [5], [6], [7], [8].

In [7], [8], they proposed a border-based algorithm for

generating Emerging Patterns. Borders are used to

represent candidates and subsets of EPs. A border is a

structure, consisting of two bounds. A simple example

might be < { {a}, {b}, { {a, b, c }, { b, d } } >. It

represents all those sets which are supersets of {a} or {b}

and subsets of {a, b, c} or {b, d}. In fact, the entire

process of discovering EPs only needs to deal with

borders.

A Jumping Emerging Pattern (JEP) [9], [10] only

concerns those itemsets whose growth ratios are infinite.

However, even the most efficient algorithm for mining

JEPs [9] are not fast enough yet. It is reported that for the

UCI Waveform dataset, which consists of 5000 instances

by 21 attributes, it took up to four hours to mine 4096477

JEPs [9]. Therefore, in [5], they proposed Essential

Jumping Emerging Patterns (EJEPs) to capture the crucial

difference between a pair of data classes. EJEPs are

defined as minimal itemsets whose supports in one data

class are zero, but in another are above a given support

threshold.

Lecture Notes on Information Theory Vol. 1, No. 1, March 2013

6©2013 Engineering and Technology Publishing
doi: 10.12720/lnit.1.1.6-10

app:ds:Nov

EJEPs allow noise tolerance in dataset D2. However,

real-world data always contains noises in both dataset D1

and dataset D2. Both JEPs and EJEPs cannot capture

those useful patterns whose support in dataset D1 is very

small but not strictly zero; that is, they appear only

several times due to random noises. Therefore, in [6], the

Noise-tolerant EPs (NEPs) was proposed. The

relationships of those patterns are shown in Fig. 1.

Figure 1. The illustration of all kinds of EPs.

III. THE HGEP CLASSIFIER

A. The proposed strategy

To provide EPs with the high growth rate (GR), we

take an itemset X which satisfies the following condition

into consideration: GR(propersubset(X)) < GR(X). If an

itemset X satisfies the above condition, we keep the

itemset which has longer length and a higher growth rate

than those of its subsets. Take Table I as an example,

where SuppD1(X) and SuppD2(X) represent the support

value of itemset X in dataset D1 and dataset D2,

respectively. Let X be {a, b} and its subset be {b}.

Although itemset {b} has a higher support than itemset {a,

b} in dataset D1, itemset {b} has a smaller growth rate

from dataset D1 to dataset D2 than that of itemset {a, b}.

TABLE I. AN EXAMPLE OF TWO ITEMSETS

X suppD1(X) suppD1(X) GR(X)

{a, b} 1 2000 2000

{b} 4 2000 500

Based on the above observation, we define a new kind

of Emerging Patterns, High Growth-Rate Emerging

Pattern (HGEP), which can improve the accuracy of a

classifier. An itemset X is an HGEP for dataset D2 from

dataset D1 to dataset D2, if X satisfies one of the

following two conditions: where δ1 and δ2 are the

support thresholds of the dataset D1 and D2.

Condition 1:

(1-1) 0 < suppD1(X)≦δ1 and suppD2(X)≧δ2, where

δ1<<δ2.

(1-2) GR(propersubset(X)) < GR(X).

Condition 2:

(2-1) suppD1(X) = 0 and suppD2(X)≧δ2.

(2-2) Any proper subset of X does not satisfy Condition

(2-1).

In Condition 1, HGEPs keep those itemsets with the

finite growth rate. On the other hand, in Condition 2,

HGEPs keep those itemsets with infinite growth rates.

Moreover, Condition 1-1 represents that the HGEPs

should have a large enough growth rate, while Condition

1-2 represents that the growth rate of HGEPs should be as

large as possible. Basically, Condition 2 has the same

definition as an EJEP. However, our new-added

Condition 1 provides the high noise-tolerance. Therefore,

HGEPs contain not only the improved NEPs but also

EJEPs.

Fig. 2-(a) shows the illustration. The dashed line means

that the growth rate of the itemset is smaller than infinite;

that is, the growth rate is finite. This line represents the

property of these itemsets which satisfy Condition 1. The

HGEP generated by Condition 1 is the itemset whose

length is as long as possible and the growth rate is as high

as possible. On the other hand, at point (0, ∞), it

represents the itemsets with the infinite growth rate. At

this point, all the HGEPs are minimal itemsets; that is, it

represents those itemsets which satisfy Condition 2.

For example, we use the training datasets shown in Fig.

2-(b) as the same datasets for the following comparison,

where the growth rate threshold GR of EP is 2 and the

support threshold δ of the EJEP strategy is 2. Thresholds

δ1 and δ2 of the NEP and the HGEP strategies are 4 and

2000, respectively. From Fig. 2-(c), we see that the

numbers of EPs, JEPs, and EJEPs are decreased because

that the conditions are more and more strict. Moreover,

the condition becomes loose from the EJEP strategy to

the NEP strategy, since the number of the patterns from

the EJEP strategy to the NEP strategy may be increased.

The HGEP strategy has the similar situation as the NEP

strategy. The number of HGEPs (and NEPs) may be more

than that of EJEPs. But the number of HGEPs and NEPs

are not necessarily equal. The relationships among these

five kinds of Emerging Patterns are shown in Fig. 3. They

have the following properties:

EP ⊇ JEP ⊇ EJEP.

NEP ⊇ EJEP and HGEP ⊇ EJEP.

Figure 2. Illustration of the basic idea: (a) the illustration of HGEP; (b)

an example of all kinds of EPs training datasets; (c) the result of five

kinds of EPs.

Figure 3. The relationships between various EPs.

Lecture Notes on Information Theory Vol. 1, No. 1, March 2013

7©2013 Engineering and Technology Publishing

B. The Contrast Pattern Tree Structure

In this subsection, we first define the order that we use

to sort itemsets for adding them into the CP-tree. The

order is important for building the tree structure and for

traversing the tree systematically. It also helps to prune a

huge search space in pattern discovery [6]. Next, we

describe the data structure for mining HGEPs. Then, we

present our algorithm for mining HGEPs.

For the Ordered List, we assume that the training

datasets D contains dataset D1 and dataset D2. Let I = {i1,

i2, …, in}be the set of all items appearing in the datasets

D. Note that for an item i ∈ I, we have a singleton itemset

{i} ⊂ I.

Let the minimum support threshold ξ be a positive real

number. The support ratio of an item i between dataset

D1 and dataset D2, denoted as SupportRatio(i) [6], is

defined as SupportRatio(i) =

0 : if ;

∞ : if

 or ;

 : otherwise.

The SupportRatio(i) is used to capture individual items

which represent a sharp contrast between dataset D1 and

dataset D2 in the either direction. The larger the support

ratio of an item is, the sharper the discriminating power

associated with the item is. Usually, the support ratio is

greater than or equal to 1, since we always permit the

larger support to be divided by the smaller support. The

support ratio will become 0, if both the supports in

dataset D1 and dataset D2 are less than the minimum

support threshold ξ. Items with a support ratio 0 are not

useful for the HGEP mining, because HGEPs must satisfy

the minimum support threshold ξ and HGEPs will never

contain items whose supports in dataset D1 and dataset

D2 are less than ξ. Note that for an item i ∈ I, if

SupportRatio(i) = ∞, the item {i} is an EJEP.

Based on the above definition, we can sort the itemsets

by the total order  . Let i and j be two items. We say

that i  j, if SupportRatio(i) > SupportRatio(j); or if

SupportRatio(i) = SupportRatio(j) and i < j (in the

lexicographical order). Intuitively, [a1, a2, …, am]  [b1,

b2, …, bn] means that the items in the former itemset have

higher support ratios than those in the latter ones.

A Contrast Pattern tree (CP-tree) is an ordered

multiway tree structure. Each node X of the CP-tree has a

variable number of items, denoted as X.items[i], where i =

1, 2, …, X.itemNumber, and X.itemNumber is the number

of items at node X [5]. If X.itemNumber = k (k > 0), X

has k itemsets from dataset D1, k itemsets from dataset

D2, and at most k branches (child nodes), denoted as

X.countsD1[i], X.countsD2, and X.childe[i], respectively,

where i = 1, 2, …, k. For X.items[i] (1 ≦ i ≦ k),

X.countsD1[i] records the number of itemsets in dataset

D1 represented by the part of the path reaching X.item[i],

X.countsD2[i] records the number of itemsets in dataset

D2 represented by the part of the path reaching X.item[i],

and X.childs[i] refers to the subtree with the parent of

X.items[i] (also called X.items[i]’s subtree). To keep the

branches of X ordered, we require that the k items inside

node X satisfy: X.items[1]  X.items[2]  … 

X.items[k], where is the support-ratio-descending order

defined above. To simplify the following discussion, we

apply conventional concepts of trees [6].

C. The Mining HGEPs Process

In this subsection, we describe how to use the CP-tree

to mine HGEPs [6]. We search the CP-tree by the

depthfirst order. At the same time, we need to reconstruct

the CP-tree by merging its internal structure to ensure that

we can discover all the HGEPs.

Figure 4. The CP-tree after merging nodes (merge_tree(ST, R)): (a) the

original CP-tree; (b) the CP-tree after merge_tree(ST, R) and the

underline parts denote the changes.

The merging process step merges the nodes of subtree

T1 into subtree T2. Take Fig. 4 as an example. Let R be

the root of the CP-tree and ST be the subtree of R.e. We

perform a depth-first search of the CP-tree for HGEPs,

which is equivalent to the exploration of the pattern space:

{e}, {e, a}, {e, a, c}, {e, a, c, d} along path {e, a, c, d};

{e, b}, {e, b, c} along path {e, b, c}; {a}, {a, c} along

path {a, c}; {b}, {b, c}, {b, c, d} along path {b, c, d} and

{d} along path {d}. However, only the counts of {e}, {e,

a}, {e, a, c}, {e, a, c, d} along path {e, a, c, d} are

recorded obviously in the tree. Therefore, we need to

merge subtree ST with the root R itself to adjust the

counts of item a in the root R. We call procedure merge_

tree(ST, R) shown in Figure 4 to do the merge operation.

For the same reason, in the subtree of node R.e, the

counts of b may not be correct. By merging nodes

through the process of the depth-first search, we can

make sure that the counts will be correctly calculated for

determining HGEPs. Basically, the process merges all the

nodes of ST into corresponding parts of R. In the process

of mining HGEPs, training itemsets are sorted by its

support ratios between both datasets. When inserting the

ordered lists into the CP-tree, items with the high

support-ratio, which are more likely to appear in an

HGEP, are closer to the root. This makes the CP-tree

compact, and decrease the requirement of the storage

space of the tree. The mining process from a path in the

CP-tree to an itemset is a one-to-one mapping. Using the

predefined order  , we can generate the complete set of

paths (itemsets) systematically through the depth-first

search of the CP-tree.

According to the definition of HGEP, we divide

procedure mine_tree() into two parts: mining HGEPs of

Condition 1 and Condition 2. The flowchart of mining

 )}{2()}{1(isuppDisuppD

))}{(20)}{(1( isuppDisuppD

)0)}{(2)}{(1( isuppDisuppD 

)
)}({ 2

)}({ 1
,

)}({ 1

)}({ 2
(

isuppD

isuppD

isuppD

isuppD
max

Lecture Notes on Information Theory Vol. 1, No. 1, March 2013

8©2013 Engineering and Technology Publishing

HGEPs is shown in Fig. 5. In the part of Condition 1, all

the HGEPs are the itemsets with the finite growth rate.

For dataset D2, we can find the candidate of the form

Case 1a. Similarly, for dataset D1, we can find the

candidate of the form Case 1b. Moreover, these

candidates are not necessary valid HGEPs. We have to

compare the growth rate of each candidate with that of

each of its subsets due to the definition of an HGEP.

Figure 5. The flowchart of mining HGEPs in procedure mine_tree.

IV. PERFORMANCE

In In this section, we study the performance of the

HGEP strategy under the same input datasets: the UCI

Machine Learning Repository:

(www.ics.uci.edu/~mlearn/MLRepository.html)

TABLE II. A COMPARISON OF ACCURACY

Case Dataset NEP HGEP

1 australian 67.00 80.99

2 diabetes 63.33 64.99

3 glass2 61.66 61.66

4 heart 71.66 86.66

5 monk1-bin 78.33 81.66

6 monk3-local 71.66 76.66

7 mux6 48.33 60.00

8 parity5+5 76.66 73.33

9 pima 44.99 61.66

10 sonar 61.66 66.66

11 vehicle 71.66 71.66

12 waveform-21 56.67 56.67

13 waveform-40 76.66 68.33

 average 65.02 70.07

The comparison of the accuracy between our HGEP

strategy and the NEP strategy is shown in Table II. We

observe that our HGEP strategy ptovides the higher

accuracy than the NEP strategy on 8 datasets (datasets No.

1, 2, 4, 5, 6, 7, 9, and 10). For the remaining 5 datasets

(datasets No. 3, 8, 11, 12, and 13), the accuracy of the

HGEP strategy is still very close to that of the NEP

strategy. Therefore, the average accuracy of our HGEP

strategy is still better than that of the NEP strategy. In the

following cases, we add random noises to three datasets

and observe how the accuracy is affected by the

percentage of the increasing noises between our HGEP

strategy and the NEP strategy. The percentages of noises

of each dataset are chosen from 0% to 26%, which adds

the number of noises from 1 instance to 9 instances into

original 25 instances, respectively. Therefore, both of the

NEP strategy and our strategy will not run out of memory.

In Fig. 6 and Fig. 7, we show the comparison, when we

use diabetes (Case 2) and mux6 (Case 7) as the input

datasets, respectivedly. From both figures, we show that

the accuracy of our HGEP strategy is better than that of

the NEP strategy.

Figure 6. The effect of increasing noises on dataset diabetes (Case 2).

Figure 7. The effect of increasing noises on dataset mux6 (Case 7).

V. CONCLUSION

Mining the significant differences based on the

classifier from two-polarization classes of the gene

expression recorded in microarray is an important task,

such as the Emerging Pattern. In this paper, we have

proposed a new strategy EP, called the HGEP strategy,

for mining high growth-rate EPs. Based on the

comparison with the NEP strategy by using several real

microarray datasets, we have shown that the accuracy of

our HGEP strategy is higher than that of the NEP strategy.

ACKNOWLEDGMENT

This research was supported in part by the National

Science Council of Republic of China under Grant No.

NSC-99-2221-E-110-080-MY3.

Lecture Notes on Information Theory Vol. 1, No. 1, March 2013

9©2013 Engineering and Technology Publishing

REFERENCES

[1] C. Gonzaga-Jauregui, J. R. Lupski, and R. A. Gibbs, “Human

Genome Sequencing in Health and Disease,” Annual Review of

Medicine, vol. 63, pp. 35-61, February 2012.

[2] M. N. Wass, A. David, and M. J. Sternberg, “Challenges for the

Prediction of Macromolecular Interactions,” Current Opinion in

Structural Biology, vol. 21, no. 3, pp. 382-390, June 2011.

[3] H. Hatakeyama , E. Ito , M. Yamamoto, H. Akita, Y. Hayashi, K.

Kajimoto, N. Kaji, Y. Baba, and H. Harashima, “A DNA

microarray-based analysis of the host response to a nonviral gene

carrier: A strategy for improving the immune response,”

Molecular Therapy : The Journal of the American Society of Gene

Therapy, vol. 19, no. 8, pp. 1487-1498, August 2011.

[4] C. C. Li, H. Y. Lo, C. Y. Hsiang, and T. Y. Ho, “DNA microarray

analysis as a tool to investigate the therapeutic mechanisms and

drug development of Chinese medicinal herbs,” BioMedicine, vol.

2, no. 1, pp. 10-16, March 2012.

[5] H. Fan and K. Ramamohanarao, “An Efficient Single-Scan

Algorithm for Mining Essential Jumping Emerging Patterns for

Classification,” in Proc. 6th Pacific- Asia Conf. on Knowledge

Discovery and Data Mining, Taipei, 2002, pp. 456-462.

[6] H. Alhammady and K. Ramamohanarao, “Fast Discovery and the

Generalization of Strong Jumping Emerging Patterns for Building

Compact and Accurate Classifiers,” IEEE Trans. on Knowledge

and Data Eng., vol. 18, no. 6, pp. 721-737, June 2006.

[7] G. Dong and J. Li, “Efficient Mining of Emerging Patterns:

Discovering Trends and Differences,” in Proc. Int. Conf.

Knowledge Discovery and Data Mining, San Diego, 1999, pp. 43-

52.

[8] G. Dong and J. Li, “Mining Border Descriptions of Emerging

Patterns from Dataset Pairs,” Knowledge and Information Systems,

vol. 8, no. 2, pp. 178-202, August 2005.

[9] J. Bailey, T. Manoukian, and K. Ramamohanarao, “Fast

Algorithms for Mining Emerging Patterns,” in Proc. 6th European

Conf. on Principles and Practice of Knowledge Discovery in

Databases, Helsinki, 2002, pp. 39-50.

[10] J. Li, G. Dong, and K. Ramamohanarao, “Making use of the most

expressive jumping emerging patterns for classification,”

Knowledge and Information Systems, vol. 3, no. 2, pp. 131-145,

May 2001.

Ye-In Chang received the B.S. degree in

computer science and information engineering

from National Taiwan University, Taipei, Taiwan,

in 1986, and M.S. and Ph.D. degrees in computer

science and engineering from The Ohio State

University, Columbus, Ohio, in 1987 and 1991,

respectively. From August 1991 to July 1999, she

jointed the faculty of Department of Applied

Mathematics at National Sun Yat-Sen University,

Kaohsiung, Taiwan. Since August 1997, she has been a Professor in

Department of Applied Mathematics at National Sun Yat-Sen

University. Since August 1999, she has been a Professor in Department

of Computer Science and Engineering at National Sun Yat-Sen

University. Her research interests include database systems, distributed

systems, data mining and bioinformatics.

Zih-Siang Chen received B.S. and M.S. degrees in computer science

from National Pingtung University of Education in 2008 and 2010,

respectively. He is currently a Ph.D. student in Department of Computer

Science and Engineering at National Sun Yat-Sen University. His

research interests include spatial mining and bioinformatics.

Tsung-Bin Yang received the B.S. degree in applied mathematics from

National Chiayi University in 2005, and the M.S. degree in computer

science and engineering from National Sun Yat-Sen University in 2007.

He is currently a system design engineer in Taiwan.

Author’s formal

photo

Lecture Notes on Information Theory Vol. 1, No. 1, March 2013

10©2013 Engineering and Technology Publishing

