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
Abstract—In the data classification problem for microarray 

datasets, we consider two biology datasets which reflect two 

extreme different classes for the given same sets of tests. 

Basically, the classification process contains two phases: (1) 

the training phase, and (2) the testing phase. The propose of 

the training phase is to find the representative Emerging 

Patterns (EPs) in each of these two datasets, where an EP is 

an itemset which satisfies some conditions of the growth rate 

from one dataset to another dataset. Note that the growth 

rate represents the differences between these two datasets. 

The EJEP strategy considers only those itemsets whose 

growth rates are infinite, since it claims that those itemsets 

may result in the high accuracy. However, the EJEP 

strategy will not keep those useful EPs whose growth rates 

are very high but not infinite. But, the real-world data 

always contains noises. The NEP strategy considers noises 

and provides the higher accuracy than the EJEP strategy. 

However, it still may miss some itemsets with high growth 

rates, which may result in the low accuracy. Therefore, in 

this paper, we propose a High Growth-rate EP (HGEP) 

strategy to improve the accuracy of the NEP strategy. From 

the performance study, our HGEP strategy shows the 

higher accuracy than the NEP strategy. 

 

Index Terms—classification, data mining, emerging pattern, 

gene expression, microarray 

 

I. INTRODUCTION 

After 10 years of research and an amazing 2 billion 

dollars in funds, the Human Genome Project finally 

reported that 99% of the human genome had been 

sequenced [1], [2]. Based on the huge gene expression 

databases from the biological experiments, scientists refer 

to the expression analysis called microarrays. A DNA 

microarray [3], [4] is a collection of microscopic DNA 

spots attached to a solid surface, which is a technology 

for simultaneously profiling the expression levels of 

thousands of genes in a patient sample. Gene expression 

datasets are typically organized as a matrix. Assume that 

such a matrix has n rows of genes and m columns of 

conditions, where n is usually in the range of [2000, 

20000] and m is usually in the range of [10, 100], i.e., 

n>>m.  

For Emerging Patterns (EPs), we will build a 

classification model from the training data, where the 

model is represented by n sets of EPs, one set per class. 
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The model can be used to prodict unknown instances in 

the future. We stress that the building of the model, 

which is equivalent to the discovery of EPs. 

According to different types of the training data, the 

strategies of the EPs can be divided into two categories, 

i.e., the EPs with the infinite growth rate and the EPs with 

the finite growth rate. The EJEP strategy [5] only cares 

about those itemsets with the infinite growth rate. It 

ignores those patterns which have very large growth rates, 

although not infinite, i.e., the so called “noise”. However, 

the real-world data always contains noises and the NEP 

strategy [6] considers noises and provides higher 

accuracy than the EJEP strategy. Although the NEP 

strategy takes noise patterns into consideration, it still 

will miss some itemsets with a large growth rate, which 

may result in the low accuracy. Therefore, in this paper, 

we propose a High Growth-rate EP (HGEP) strategy to 

improve the disadvantage of the NEP strategy. From the 

experiment results, we show that the average accuracy of 

our HGEP strategy is higher than that of the NEP strategy. 

II. THE RELATED WORK 

In this section, we describe three well-known strategies 

for mining all kinds of Emerging Patterns [5], [6], [7], [8].  

In [7], [8], they proposed a border-based algorithm for 

generating Emerging Patterns. Borders are used to 

represent candidates and subsets of EPs. A border is a 

structure, consisting of two bounds. A simple example 

might be < { {a}, {b}, { {a, b, c }, { b, d } } >. It 

represents all those sets which are supersets of {a} or {b} 

and subsets of {a, b, c} or {b, d}. In fact, the entire 

process of discovering EPs only needs to deal with 

borders.  

A Jumping Emerging Pattern (JEP) [9], [10] only 

concerns those itemsets whose growth ratios are infinite. 

However, even the most efficient algorithm for mining 

JEPs [9] are not fast enough yet. It is reported that for the 

UCI Waveform dataset, which consists of 5000 instances 

by 21 attributes, it took up to four hours to mine 4096477 

JEPs [9]. Therefore, in [5], they proposed Essential 

Jumping Emerging Patterns (EJEPs) to capture the crucial 

difference between a pair of data classes. EJEPs are 

defined as minimal itemsets whose supports in one data 

class are zero, but in another are above a given support 

threshold.  
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EJEPs allow noise tolerance in dataset D2. However, 

real-world data always contains noises in both dataset D1 

and dataset D2. Both JEPs and EJEPs cannot capture 

those useful patterns whose support in dataset D1 is very 

small but not strictly zero; that is, they appear only 

several times due to random noises. Therefore, in [6], the 

Noise-tolerant EPs (NEPs) was proposed. The 

relationships of those patterns are shown in Fig. 1. 

 

 

Figure 1.  The illustration of all kinds of EPs. 

III. THE HGEP CLASSIFIER 

A. The proposed strategy 

To provide EPs with the high growth rate (GR), we 

take an itemset X which satisfies the following condition 

into consideration: GR(propersubset(X)) < GR(X). If an 

itemset X satisfies the above condition, we keep the 

itemset which has longer length and a higher growth rate 

than those of its subsets. Take Table I as an example, 

where SuppD1(X) and SuppD2(X) represent the support 

value of itemset X in dataset D1 and dataset D2, 

respectively. Let X be {a, b} and its subset be {b}. 

Although itemset {b} has a higher support than itemset {a, 

b} in dataset D1, itemset {b} has a smaller growth rate 

from dataset D1 to dataset D2 than that of itemset {a, b}. 

TABLE I.  AN EXAMPLE OF TWO ITEMSETS 

X suppD1(X) suppD1(X) GR(X) 

{a, b} 1 2000 2000 

{b} 4 2000 500 

Based on the above observation, we define a new kind 

of Emerging Patterns, High Growth-Rate Emerging 

Pattern (HGEP), which can improve the accuracy of a 

classifier. An itemset X is an HGEP for dataset D2 from 

dataset D1 to dataset D2, if X satisfies one of the 

following two conditions: where δ1 and δ2 are the 

support thresholds of the dataset D1 and D2.  

Condition 1: 

(1-1)  0 < suppD1(X)≦δ1 and suppD2(X)≧δ2, where 

δ1<<δ2. 

(1-2)  GR(propersubset(X)) < GR(X). 

Condition 2: 

(2-1) suppD1(X) = 0 and suppD2(X)≧δ2. 

(2-2) Any proper subset of X does not satisfy Condition 

(2-1). 

In Condition 1, HGEPs keep those itemsets with the 

finite growth rate. On the other hand, in Condition 2, 

HGEPs keep those itemsets with infinite growth rates. 

Moreover, Condition 1-1 represents that the HGEPs 

should have a large enough growth rate, while Condition 

1-2 represents that the growth rate of HGEPs should be as 

large as possible. Basically, Condition 2 has the same 

definition as an EJEP. However, our new-added 

Condition 1 provides the high noise-tolerance. Therefore, 

HGEPs contain not only the improved NEPs but also 

EJEPs.  

Fig. 2-(a) shows the illustration. The dashed line means 

that the growth rate of the itemset is smaller than infinite; 

that is, the growth rate is finite. This line represents the 

property of these itemsets which satisfy Condition 1. The 

HGEP generated by Condition 1 is the itemset whose 

length is as long as possible and the growth rate is as high 

as possible. On the other hand, at point (0, ∞), it 

represents the itemsets with the infinite growth rate. At 

this point, all the HGEPs are minimal itemsets; that is, it 

represents those itemsets which satisfy Condition 2.  

For example, we use the training datasets shown in Fig. 

2-(b) as the same datasets for the following comparison, 

where the growth rate threshold GR of EP is 2 and the 

support threshold δ of the EJEP strategy is 2. Thresholds 

δ1 and δ2 of the NEP and the HGEP strategies are 4 and 

2000, respectively. From Fig. 2-(c), we see that the 

numbers of EPs, JEPs, and EJEPs are decreased because 

that the conditions are more and more strict. Moreover, 

the condition becomes loose from the EJEP strategy to 

the NEP strategy, since the number of the patterns from 

the EJEP strategy to the NEP strategy may be increased. 

The HGEP strategy has the similar situation as the NEP 

strategy. The number of HGEPs (and NEPs) may be more 

than that of EJEPs. But the number of HGEPs and NEPs 

are not necessarily equal. The relationships among these 

five kinds of Emerging Patterns are shown in Fig. 3. They 

have the following properties: 

EP ⊇ JEP ⊇ EJEP. 

NEP ⊇ EJEP and HGEP ⊇ EJEP. 

 

 

Figure 2.  Illustration of the basic idea: (a) the illustration of HGEP; (b) 

an example of all kinds of EPs training datasets; (c) the result of five 

kinds of EPs. 

 

Figure 3.  The relationships between various EPs. 
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B. The Contrast Pattern Tree Structure 

In this subsection, we first define the order that we use 

to sort itemsets for adding them into the CP-tree. The 

order is important for building the tree structure and for 

traversing the tree systematically. It also helps to prune a 

huge search space in pattern discovery [6]. Next, we 

describe the data structure for mining HGEPs. Then, we 

present our algorithm for mining HGEPs.  

For the Ordered List, we assume that the training 

datasets D contains dataset D1 and dataset D2. Let I = {i1, 

i2, …, in}be the set of all items appearing in the datasets 

D. Note that for an item i ∈ I, we have a singleton itemset 

{i} ⊂ I.  

Let the minimum support threshold ξ be a positive real 

number. The support ratio of an item i between dataset 

D1 and dataset D2, denoted as SupportRatio(i) [6], is 

defined as SupportRatio(i) = 

0 :   if                                                          ; 

∞ :  if  

       or                                                        ;  

 

                                             : otherwise. 

 

The SupportRatio(i) is used to capture individual items 

which represent a sharp contrast between dataset D1 and 

dataset D2 in the either direction. The larger the support 

ratio of an item is, the sharper the discriminating power 

associated with the item is. Usually, the support ratio is 

greater than or equal to 1, since we always permit the 

larger support to be divided by the smaller support. The 

support ratio will become 0, if both the supports in 

dataset D1 and dataset D2 are less than the minimum 

support threshold ξ. Items with a support ratio 0 are not 

useful for the HGEP mining, because HGEPs must satisfy 

the minimum support threshold ξ and HGEPs will never 

contain items whose supports in dataset D1 and dataset 

D2 are less than ξ. Note that for an item i ∈ I, if 

SupportRatio(i) = ∞, the item {i} is an EJEP.  

Based on the above definition, we can sort the itemsets 

by the total order  . Let i and j be two items. We say 

that i   j, if SupportRatio(i) > SupportRatio(j); or if 

SupportRatio(i) = SupportRatio(j) and i < j (in the 

lexicographical order). Intuitively, [a1, a2, …, am]   [b1, 

b2, …, bn] means that the items in the former itemset have 

higher support ratios than those in the latter ones.  

A Contrast Pattern tree (CP-tree) is an ordered 

multiway tree structure. Each node X of the CP-tree has a 

variable number of items, denoted as X.items[i], where i = 

1, 2, …, X.itemNumber, and X.itemNumber is the number 

of items at node X [5]. If X.itemNumber = k  (k > 0), X 

has k itemsets from dataset D1, k itemsets from dataset 

D2, and at most k branches (child nodes), denoted as 

X.countsD1[i], X.countsD2, and X.childe[i], respectively, 

where i = 1, 2, …, k. For X.items[i] (1 ≦ i ≦ k), 

X.countsD1[i] records the number of itemsets in dataset 

D1 represented by the part of the path reaching X.item[i], 

X.countsD2[i] records the number of itemsets in dataset 

D2 represented by the part of the path reaching X.item[i], 

and X.childs[i] refers to the subtree with the parent of 

X.items[i] (also called X.items[i]’s subtree). To keep the 

branches of X ordered, we require that the k items inside 

node X satisfy: X.items[1]   X.items[2]   …   

X.items[k], where  is the support-ratio-descending order 

defined above. To simplify the following discussion, we 

apply conventional concepts of trees [6]. 

C. The Mining HGEPs Process 

In this subsection, we describe how to use the CP-tree 

to mine HGEPs [6]. We search the CP-tree by the 

depthfirst order. At the same time, we need to reconstruct 

the CP-tree by merging its internal structure to ensure that 

we can discover all the HGEPs. 

 

Figure 4.  The CP-tree after merging nodes (merge_tree(ST, R)): (a) the 

original CP-tree; (b) the CP-tree after merge_tree(ST, R) and the 

underline parts denote the changes. 

The merging process step merges the nodes of subtree 

T1 into subtree T2. Take Fig. 4 as an example. Let R be 

the root of the CP-tree and ST be the subtree of R.e. We 

perform a depth-first search of the CP-tree for HGEPs, 

which is equivalent to the exploration of the pattern space: 

{e}, {e, a}, {e, a, c}, {e, a, c, d} along path {e, a, c, d}; 

{e, b}, {e, b, c} along path {e, b, c}; {a}, {a, c} along 

path {a, c}; {b}, {b, c}, {b, c, d} along path {b, c, d} and 

{d} along path {d}. However, only the counts of {e}, {e, 

a}, {e, a, c}, {e, a, c, d} along path {e, a, c, d} are 

recorded obviously in the tree. Therefore, we need to 

merge subtree ST with the root R itself to adjust the 

counts of item a in the root R. We call procedure merge_ 

tree(ST, R) shown in Figure 4 to do the merge operation. 

For the same reason, in the subtree of node R.e, the 

counts of b may not be correct. By merging nodes 

through the process of the depth-first search, we can 

make sure that the counts will be correctly calculated for 

determining HGEPs. Basically, the process merges all the 

nodes of ST into corresponding parts of R. In the process 

of mining HGEPs, training itemsets are sorted by its 

support ratios between both datasets. When inserting the 

ordered lists into the CP-tree, items with the high 

support-ratio, which are more likely to appear in an 

HGEP, are closer to the root. This makes the CP-tree 

compact, and decrease the requirement of the storage 

space of the tree. The mining process from a path in the 

CP-tree to an itemset is a one-to-one mapping. Using the 

predefined order  , we can generate the complete set of 

paths (itemsets) systematically through the depth-first 

search of the CP-tree.  

According to the definition of HGEP, we divide 

procedure mine_tree() into two parts: mining HGEPs of 

Condition 1 and Condition 2. The flowchart of mining 

  )}{2()}{1( isuppDisuppD

))}{(20)}{(1(  isuppDisuppD

)0)}{(2)}{(1(  isuppDisuppD 

)
)}({ 2
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,
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HGEPs is shown in Fig. 5. In the part of Condition 1, all 

the HGEPs are the itemsets with the finite growth rate. 

For dataset D2, we can find the candidate of the form 

Case 1a. Similarly, for dataset D1, we can find the 

candidate of the form Case 1b. Moreover, these 

candidates are not necessary valid HGEPs. We have to 

compare the growth rate of each candidate with that of 

each of its subsets due to the definition of an HGEP. 

 

Figure 5.  The flowchart of mining HGEPs in procedure mine_tree. 

IV. PERFORMANCE 

In In this section, we study the performance of the 

HGEP strategy under the same input datasets: the UCI 

Machine Learning Repository: 

(www.ics.uci.edu/~mlearn/MLRepository.html)  

TABLE II.  A COMPARISON OF ACCURACY 

Case Dataset NEP HGEP 

1 australian 67.00 80.99 

2 diabetes 63.33 64.99 

3 glass2 61.66 61.66 

4 heart 71.66 86.66 

5 monk1-bin 78.33 81.66 

6 monk3-local 71.66 76.66 

7 mux6 48.33 60.00 

8 parity5+5 76.66 73.33 

9 pima 44.99 61.66 

10 sonar 61.66 66.66 

11 vehicle 71.66 71.66 

12 waveform-21 56.67 56.67 

13 waveform-40 76.66 68.33 

 average 65.02 70.07 

The comparison of the accuracy between our HGEP 

strategy and the NEP strategy is shown in Table II. We 

observe that our HGEP strategy ptovides the higher 

accuracy than the NEP strategy on 8 datasets (datasets No. 

1, 2, 4, 5, 6, 7, 9, and 10). For the remaining 5 datasets 

(datasets No. 3, 8, 11, 12, and 13), the accuracy of the 

HGEP strategy is still very close to that of the NEP 

strategy. Therefore, the average accuracy of our HGEP 

strategy is still better than that of the NEP strategy. In the 

following cases, we add random noises to three datasets 

and observe how the accuracy is affected by the 

percentage of the increasing noises between our HGEP 

strategy and the NEP strategy. The percentages of noises 

of each dataset are chosen from 0% to 26%, which adds 

the number of noises from 1 instance to 9 instances into 

original 25 instances, respectively. Therefore, both of the 

NEP strategy and our strategy will not run out of memory. 

In Fig. 6 and Fig. 7, we show the comparison, when we 

use diabetes (Case 2) and mux6 (Case 7) as the input 

datasets, respectivedly. From both figures, we show that 

the accuracy of our HGEP strategy is better than that of 

the NEP strategy. 

 

Figure 6.  The effect of increasing noises on dataset diabetes (Case 2). 

 

Figure 7.  The effect of increasing noises on dataset mux6 (Case 7). 

V. CONCLUSION 

Mining the significant differences based on the 

classifier from two-polarization classes of the gene 

expression recorded in microarray is an important task, 

such as the Emerging Pattern. In this paper, we have 

proposed a new strategy EP, called the HGEP strategy, 

for mining high growth-rate EPs. Based on the 

comparison with the NEP strategy by using several real 

microarray datasets, we have shown that the accuracy of 

our HGEP strategy is higher than that of the NEP strategy. 
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